
Process Synchronization

By
Dr. Upasana Pandey

Department of Computer Science & Engineering
IMS Engineering College (College Code:143)

Background

◼ Processes can execute concurrently

⚫ May be interrupted at any time, partially completing

execution

◼ Concurrent access to shared data may result in data

inconsistency

◼ Maintaining data consistency requires mechanisms to ensure

the orderly execution of cooperating processes

P() Case 1:
P1 P2
(Sequentially
access)

Case 2:
P1 P2
(interleaving
access)

{
Read (a)
a=a+1
Write (a)
}

11 12 10
11

11

In case 2, data has been inconsistent.

Producer

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

◼ Illustration of the problem:

Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having
an integer counter that keeps track of the number of full buffers.
Initially, counter is set to 0. It is incremented by the producer after it
produces a new buffer and is decremented by the consumer after it
consumes a buffer.

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) %

BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

Race Condition
◼ counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

◼ counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

◼ Consider this execution interleaving with “count = 5”initially:

S0: producer execute register1 = counter

S1: producer execute register1 = register1 + 1

S2: consumer execute register2 = counter

S3: consumer execute register2 = register2 – 1

S4: producer execute counter = register1

S5: consumer execute counter = register2

{register1 = 5}
{register1 = 6}
{register2 = 5}
{register2 = 4}
{counter = 6 }
{counter = 4}

Critical Section Problem

◼ Consider system of n processes {p0, p1, … pn-1}

◼ Each process has critical section segment of code

⚫ Process may be changing common variables, updating

table, writing file, etc

⚫ When one process in critical section, no other may be in its

critical section

◼ Critical section problem is to design protocol to solve this

◼ Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,

then remainder section

Critical Section

◼ General structure of process Pi

Criteria to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections

2. Progress - If no process is executing in its critical section and

there exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of

times that other processes are allowed to enter their critical

sections after a process has made a request to enter its critical

section and before that request is granted

Using turn variable two process
solution for critical section

P0 P1

while (1)
{
while (turn !=0);
Critical Section
turn=1;
Remainder section;
}

while (1)
{
while (turn !=1);
Critical Section
turn=0;
Remainder section;
}

Boolean int turn=0;

Outcome:
Mutual Exclusion is satisfied but Progress criteria is not satisfied. Therefore it is not
consistent solution.

Using flag variable two process
solution for critical section

P0 P1

1. while (1)
2. {
3. flag[0]=true;
4. while (flag[1]);
5. Critical Section
6. flag[0]=false;
}

1. while (1)
2. {
3. flag[1]=true;
4. while (flag[0]);
5. Critical Section
6. flag[1]=false;
}

Boolean int flag[2];
flag [0]=false;
flag [1]=false;

Outcome:
Mutual Exclusion and Progress criteria, both are satisfied. But if P0 executed till line 3
and context switch occurs for P1, P1 executed till line 3 and check the condition which
is false then cannot enter into critical section. Same is happening with P0 also. In this
situation no process can enter into critical section. Deadlock occurred.

Thank You

