
Non-Contiguous Memory Allocation –
Translation Look aside Buffer

By
Dr. Upasana Pandey

Department of Computer Science & Engineering
IMS Engineering College (College Code:143)



Recap

We have discussed-

• Paging in OS is a non-contiguous memory allocation technique.

• Page Table is a data structure that maps page number to the frame 
number.

Disadvantage Of Paging-

• One major disadvantage of paging is-

• It increases the effective access time due to increased number of 
memory accesses.

• One memory access is required to get the frame number from the 
page table.

• Another memory access is required to get the instruction from the 
page.



Translation Lookaside Buffer
• Translation Lookaside Buffer (TLB) is a solution

that tries to reduce the effective access time.

• Being a hardware, the access time of TLB is
very less as compared to the main memory.

• Translation Lookaside Buffer (TLB) consists of 
two columns-
– Page Number

– Frame Number

Page Number Frame Number



Address Translation

In a paging scheme using TLB,

The logical address generated by the CPU is
translated into the physical address using
following steps-

Step-01:

CPU generates a logical address consisting of two
parts-
– Page Number

– Page Offset



Address Translation
Step-02:

TLB is checked to see if it contains an entry for the referenced page 
number. The referenced page number is compared with the TLB 
entries all at once. Now, two cases are possible-

Case-01: If there is a TLB hit-

• If TLB contains an entry for the referenced page number, a TLB hit 
occurs.

• In this case, TLB entry is used to get the corresponding frame number 
for the referenced page number.

Case-02: If there is a TLB miss-

• If TLB does not contain an entry for the referenced page number, a 
TLB miss occurs.

• In this case, page table is used to get the corresponding frame 
number for the referenced page number.

• Then, TLB is updated with the page number and frame number for 
future references.



Address Translation
Step-03:

• After the frame number is obtained, it is combined with the
page offset to generate the physical address.

• Then, physical address is used to read the required word
from the main memory.

NOTE-
In the above discussion, we have assumed that no Page
Fault occurs.

Page Fault-
• When a page referenced by the CPU is not found in the

main memory, it is called as a page fault.
• When a page fault occurs, the required page has to be

fetched from the secondary memory into the main memory.







Important Points
Point-01:
• Unlike page table, there exists only one TLB in the system.
• So, whenever context switching occurs, the entire content of TLB is

flushed and deleted.
• TLB is then again updated with the currently running process.

Point-02:
• When a new process gets scheduled-
• Initially, TLB is empty. So, TLB misses are frequent.
• With every access from the page table, TLB is updated.
• After some time, TLB hits increases and TLB misses reduces.

Point-03:
• The time taken to update TLB after getting the frame number from

the page table is negligible.
• Also, TLB is updated in parallel while fetching the instruction from

the main memory.



Example
A paging scheme uses a Translation Lookaside buffer (TLB). A TLB access takes 10 ns and a main memory
access takes 50 ns. What is the effective access time (in ns) if the TLB hit ratio is 90% and there is no
page fault?

Solution-

Given-

TLB access time = 10 ns

Main memory access time = 50 ns

TLB Hit ratio = 90% = 0.9

Calculating TLB Miss Ratio-

TLB Miss ratio

= 1 – TLB Hit ratio

= 1 – 0.9

= 0.1

Calculating Effective Access Time-

Substituting values in the above formula, we get-

Effective Access Time

= 0.9 x { 10 ns + 50 ns } + 0.1 x { 10 ns + 2 x 50 ns }

= 0.9 x 60 ns + 0.1 x 110 ns

= 54 ns + 11 ns

= 65 ns



Translation Lookaside Buffer
Advantages-

• TLB reduces the effective access time.

• Only one memory access is required when TLB hit occurs.

Disadvantages-

• After some time of running the process, when TLB hits increases
and process starts to run smoothly, a context switching occurs. The
entire content of the TLB is flushed. Then, TLB is again updated
with the currently running process. This happens again and again.

• TLB can hold the data of only one process at a time.

• When context switches occur frequently, the performance of TLB
degrades due to low hit ratio.

• As it is a special hardware, it involves additional cost.



Thank You


