Classical Problem of Synchronization

By
Dr. Upasana Pandey
Department of Computer Science & Engineering

IMS Engineering College (College Code:143)

Classical Problem of Synchronization

Producer Consumer Problem
Reader Writer Problem

Dining Philosopher Problem

= W

. Barber Shop Problem

1. Semaphores for Producer Consumer Problem

Semaphore
mutex=1

Semaphore
Empty=n (Total
number of buffer,
suppose n=5)

Semaphore Full=0
(acts as counter
to keep track for
free buffer).

void producer ()

{

while(true)

{

wait (Empty);
wait (mutex);
append();
signal(mutex);
signal(Full);

}

}

void consumer()

{

while(true)

{

wait(Full);
wait(mutex);
take();
signal(mutex);
signal(Empty);
}

}

2. Semaphores for Reader Writer Problem

A database is to be shared among several
concurrent processes.

Some processes may want only to read the
database- Readers

Other may want to update (read + write)-Writers

Readers and writes are accessing a shared
resource by the following rules:

— Readers can read simultaneously.
— Only one writer can write at any time.
— When a writer is writing, no reader can read.

— If there is any reader reading, all incoming writers
must wait. Thus readers have higher priority.

2.Semaphores for Reader Writer Problem (cont.)

_ Writer Process Reader Process

Semaphore do do
mutex=1 { {
Semaphore wrt=1 wait (wrt) wait (mutex)
int readcount=0 write operation readcount + +
signal (wrt) if (readcount==1)
} while (true); wait (wrt)
signal (mutex)

read operation
wait (mutex)
readcount - -
(if readcount = = 0)

signal(wrt)
signal (mutex)
} while (true);

2. Semaphores for Reader Writer Problem (cont.)

* Mutual Exclusion satisfied.
* Progress satisfied.

e But violating bounded waiting: when a write
comes in, it waits until no reader is reading.

3. Semaphores for Dining Philosopher
Problem

“Five philosophers sit around a circular table”.

Each philosopher spend his life alternatively
thinking and eating.

In the centre of the table is a large plate of food.
A philosopher needs two forks to eat.

One fork is placed between each pair of
philosopher and they agree that each will only
use the fork to his immediate left and then right.

There are five philosopher processes numbered O
to 4. Fork is also numbered through 0 to 4.

3. Semaphores for Dining Philosopher
Problem

F1 PO FO

P1

F4

F2

F3

3. Semaphores for Dining Philosopher

Problem
-
Semaphore s[5]; s[5]={1,1,1,1,1};
void philosopher (void) s[0]=1, s[1]=1, s[2]=1,
{ s[3]=1, s[4]=1
while(true)
{ PO SO S1
think(); P1 S1 S2
wait(takefork(Si)); // Left Fork P2 S2 S3
wait(takefork((Si+1)%5); //Right Fork P3 S3 5S4
eat(); P4 S4 SO

signal(putfork(Si));
signal(putfork((Si+1)%5);
}
}

Outcome: Deadlock occurred.

3. Semaphores for Dining Philosopher
Problem
Solution: P4 Philosopher first take right fork and then take left fork.

s[0]=1, s[1]=1], s[2]=1, s[3]=1,
s[4]=1

PO SO S1
P1 S1 S2
P2 S2 S3
P3 S3 S4
P4 SO S4

For Nth Process:

wait (takefork(i+1%5));

// Right Fork

wait (takefork(i));//Left Fork

Thank you

