
Classical Problem of Synchronization

By
Dr. Upasana Pandey

Department of Computer Science & Engineering
IMS Engineering College (College Code:143)

Classical Problem of Synchronization

1. Producer Consumer Problem

2. Reader Writer Problem

3. Dining Philosopher Problem

4. Barber Shop Problem

1. Semaphores for Producer Consumer Problem

Semaphore
mutex=1

Semaphore
Empty=n (Total
number of buffer,
suppose n=5)

Semaphore Full=0
(acts as counter
to keep track for
free buffer).

void producer ()
{
while(true)
{
wait (Empty);
wait (mutex);
append();
signal(mutex);
signal(Full);
}
}

void consumer()
{
while(true)
{
wait(Full);
wait(mutex);
take();
signal(mutex);
signal(Empty);
}
}

1 2 3 4 5Buffer size n=5

2. Semaphores for Reader Writer Problem

• A database is to be shared among several
concurrent processes.

• Some processes may want only to read the
database- Readers

• Other may want to update (read + write)-Writers

• Readers and writes are accessing a shared
resource by the following rules:
– Readers can read simultaneously.

– Only one writer can write at any time.

– When a writer is writing, no reader can read.

– If there is any reader reading, all incoming writers
must wait. Thus readers have higher priority.

2.Semaphores for Reader Writer Problem (cont.)

Writer Process Reader Process

Semaphore
mutex=1
Semaphore wrt=1
int readcount=0

do
{
wait (wrt)
write operation
signal (wrt)
} while (true);

do
{
wait (mutex)
readcount + +
if (readcount==1)

wait (wrt)
signal (mutex)

read operation
wait (mutex)
readcount - -
(if readcount = = 0)

signal(wrt)
signal (mutex)
} while (true);

2. Semaphores for Reader Writer Problem (cont.)

• Mutual Exclusion satisfied.

• Progress satisfied.

• But violating bounded waiting: when a write
comes in, it waits until no reader is reading.

3. Semaphores for Dining Philosopher
Problem

• “Five philosophers sit around a circular table”.
• Each philosopher spend his life alternatively

thinking and eating.
• In the centre of the table is a large plate of food.
• A philosopher needs two forks to eat.
• One fork is placed between each pair of

philosopher and they agree that each will only
use the fork to his immediate left and then right.

• There are five philosopher processes numbered 0
to 4. Fork is also numbered through 0 to 4.

3. Semaphores for Dining Philosopher
Problem

Rice
Bowl

P0

P1

P2

P4

P3

F0F1

F2

F3

F4

3. Semaphores for Dining Philosopher
Problem

Semaphore s[5];
void philosopher (void)
{

while(true)
{

think();
wait(takefork(Si)); // Left Fork
wait(takefork((Si+1)%5); //Right Fork
eat();
signal(putfork(Si));
signal(putfork((Si+1)%5);

}
}

s[5]={1,1,1,1,1};
s[0]=1, s[1]=1, s[2]=1,
s[3]=1, s[4]=1

P0 S0 S1
P1 S1 S2
P2 S2 S3
P3 S3 S4
P4 S4 S0

Outcome: Deadlock occurred.

3. Semaphores for Dining Philosopher
Problem

s[0]=1, s[1]=1, s[2]=1, s[3]=1,
s[4]=1

P0 S0 S1
P1 S1 S2
P2 S2 S3
P3 S3 S4
P4 S0 S4

For Nth Process:
wait (takefork(i+1%5));
// Right Fork
wait (takefork(i));//Left Fork

Rice
Bowl

P0

P1

P2

P4

P3

F0F1

F2

F3

F4

Solution: P4 Philosopher first take right fork and then take left fork.

Thank you

