
Process Synchronization-
Peterson’s Solution

Semaphores

By
Dr. Upasana Pandey

Department of Computer Science & Engineering
IMS Engineering College (College Code:143)



Using turn variable two process 
solution for critical section

P0 P1

while (1)
{
while (turn !=0);
Critical Section
turn=1;
Remainder section;
}

while (1)
{
while (turn !=1);
Critical Section
turn=0;
Remainder section;
}

Boolean int turn=0;

Outcome:
Mutual Exclusion is satisfied but Progress criteria is not satisfied. Therefore it is not 
consistent solution.



Using flag variable two process 
solution for critical section

P0 P1

1. while (1)
2. {
3. flag[0]=true;
4. while (flag[1]);
5. Critical Section
6. flag[0]=false;
}

1. while (1)
2. {
3. flag[1]=true;
4. while (flag[0]);
5. Critical Section
6. flag[1]=false;
}

Boolean flag[2];
flag [0]=false;
flag [1]=false;

Outcome:
Mutual Exclusion and Progress criteria, both are satisfied. But if P0 executed till line 3 
and context switch occurs for P1, P1 executed till line 3 and check the condition which 
is false then cannot enter into critical section. Same is happening with P0 also. In this 
situation no process can enter into critical section. Deadlock occurred.



Peterson’s Solution for Critical Section

P0 P1

1. while (1)
2. {
3. flag[0]=true;
4. turn=1;
5. while (turn==1 && flag[1]==true);
6. Critical Section
7. flag[0]=false;
}

1. while (1)
2. {
3. flag[1]=true;
4. turn=0;
5. while (turn==0 && flag[0]==true);
6. Critical Section
7. flag[1]=false;
}

Boolean int turn=0;
Boolean flag[2];
flag [0]=false;
flag [1]=false;

Outcome:
1. Mutual exclusion is satisfied.
2. Progress is satisfied.
3. Bounded Waiting is satisfied.
4. Restricted  to two process only.



Semaphores

• It is a synchronization tool.
• It gives solution for n processes.
• A semaphore is an integer variable that apart

from initialization, is accessed only through two
standard atomic operations.

• Two standard operation: wait(), signal().
• Less complicated.
• Counting semaphore-integer value can range

over an unrestricted domain.
• Binary semaphore-integer value can range only

between 0 and 1.



Semaphores for Critical Section Problem

P1….Pn, int s=1; Wait(s) Signal(s)

do
{
Wait(s);
Critical Section;
Signal(s);
Remainder section;
}
While (true);

Wait(s)
{
While(s<=0);
s=s-1;
}

Signal (s)
{
s=s+1;
}

1. Support mutual exclusion.
2. Support progress.
3. Does not support bounded waiting.



Semaphores for deciding order of 
execution

Suppose we have three process ; P1 (calculating Area), P2 
(calculating Radius), P3 (calculating Cost for Area).
In this case we need order of execution; P2->P1->P3.
Initialize s1=0, s2=0

P1

Wait (s1);
Code of process P1;
Signal (s2);

P2

Code of P2;
Signal(s1);

P3

Code of P3;



Semaphores for managing multiple 
instances of resources

Suppose we have total five instances of printer.
In this case we need to initialize 
s=5;

do
{
Wait(s);
Critical Section;
Signal(s);
Remainder section;
}
While (true);



Thank you
For any query contact at upasana.pandey@imsec.ac.in


