
Monitor

By
Dr. Upasana Pandey

Department of Computer Science & Engineering
IMS Engineering College (College Code:143)

Monitor

A

B

C

P1

P2

When multiple process access shared resources simultaneously,
create problem of race condition.

Monitor

A monitor is a module that encapsulates:
• Shared data structure.
• Procedure that operates on shared data.
• Synchronization between concurrent procedure invocation.

A

B

C

Procedures

Procedures

Procedures

P1

P2

Monitor

Only one process can enter into monitor at a time.

A

B

C

Procedures

Procedures

Procedures

P1

P2Block

Monitor

P1 P2

P3

Trying to enter into monitor

Monitor

Monitor account
{
Double balance;

Withdraw amount()
{
balance=balance-amount
return balance
}

}

T1 T2 T3

Monitor
T1 T2 T3

withdraw (w)

Process switch T2

balance=balance-w

resume

resume

resume

Blocked, switch T3

withdraw(a)

withdraw(b)

Blocked, switch T1

Bounded Buffer Problem

Buffer

Put_item

Get_item

P

C

Initially buffer is empty.
Consumer entered into monitor for consuming data, buffer is empty, it starts waiting
in monitor.
Now, producer wants to produce data, but monitor will not allow it to enter because
consumer already entered into monitor.
Solution: Conditional Variable

Conditional variable

• Conditional variable provides synchronization
inside the monitor.

• If a process wants to sleep inside the monitor
or it allows a waiting process to continue, in
that case conditional variable is used in
monitor.

• Three operation can be performed:

– wait, signal and broadcast.

Conditional variable

• Wait: if resource is currently not available,
current process put to sleep. It releases the lock
for monitor.

• Signal: it wakes up one process which are
sleeping as a result of wait(). This causes a
waiting process to resume immediately. The lock
is automatically pass to the waiter, the original
process blocked now.

• Broadcast: it signal to all waiting processes.

Conditional variable

Buffer

Put_item

Get_item

P

Conditionvariable.wait
Conditionvariable.signal

cond

Single Resource Allocation

Monitor single_resource
{
boolean busy;
condition nonbusy;

Acquire()
{

if busy then nonbusy.wait
else busy=true

}
Release()
{

busy=false;
Nonbusy.signal;

}

}

R Acquire

Release

busy: Boolean

Conditional variable

Single Resource Allocation

P1 P2

sr.acquire sr.acquire

……….. ………

……….. ………

……….. ………

sr.release sr.release

R Acquire

Release

busy: false

Single Resource

acquire()
{

if busy then nonbusy.wait
else busy=true

}

release()
{

busy=false;
Nonbusy.signal;

}

Bounded Buffer Problem

1 2 3 4 5

count

Produce

Consume

full empty

monitor bb
{

int data[5];
int count;
condition full;
condition empty;
produce()
{
if count==5 then full.wait
add item to buffer & increase count value
empty.signal
}
consume()
{
if count==0 then empty.wait
access item from buffer and remove count value
empty.signal

}
}

Thank You

