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When multiple process access shared resources simultaneously, 
create problem of race condition.



Monitor

A monitor is a module that encapsulates: 
• Shared data structure.
• Procedure that operates on shared data.
• Synchronization between concurrent procedure invocation.
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Monitor

Only one process can enter into monitor at a time.
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Trying to enter into monitor



Monitor

Monitor account
{
Double balance;

Withdraw amount()
{
balance=balance-amount
return balance
}

}

T1 T2 T3
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withdraw (w)

Process switch T2

balance=balance-w

resume
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Blocked, switch T3

withdraw(a)

withdraw(b)

Blocked, switch T1



Bounded Buffer Problem
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Initially buffer is empty.
Consumer entered into monitor for consuming data, buffer is empty, it starts waiting 
in monitor.
Now, producer wants to produce data, but monitor will not allow it to enter because 
consumer already entered into monitor.
Solution: Conditional Variable



Conditional variable

• Conditional variable provides synchronization 
inside the monitor.

• If a process wants to sleep inside the monitor 
or it allows a waiting process to continue, in 
that case conditional variable is used in 
monitor.

• Three operation can be performed:

– wait, signal and broadcast.



Conditional variable

• Wait: if resource is currently not available,
current process put to sleep. It releases the lock
for monitor.

• Signal: it wakes up one process which are
sleeping as a result of wait(). This causes a
waiting process to resume immediately. The lock
is automatically pass to the waiter, the original
process blocked now.

• Broadcast: it signal to all waiting processes.
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Single Resource Allocation

Monitor single_resource
{
boolean busy;
condition nonbusy;

Acquire()
{

if busy then nonbusy.wait
else busy=true

}
Release()
{

busy=false;
Nonbusy.signal;

}

} 

R Acquire

Release

busy: Boolean

Conditional variable



Single Resource Allocation
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sr.acquire sr.acquire

………..                            ………

………..                            ………

………..                            ………

sr.release sr.release

R Acquire

Release

busy: false

Single Resource

acquire()
{

if busy then nonbusy.wait
else busy=true

}

release()
{

busy=false;
Nonbusy.signal;

}



Bounded Buffer Problem
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monitor bb
{

int data[5];
int count;
condition full;
condition empty;
produce()
{
if count==5 then full.wait
add item to buffer & increase count value
empty.signal
}
consume()
{
if count==0 then empty.wait
access item from buffer and remove count value
empty.signal

}
} 
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